

Q Zoom Out and Observe: News Environment Perception for Fake News Detection

Qiang Sheng, Juan Cao, Xueyao Zhang, Rundong Li, Danding Wang, Yongchun Zhu Institute of Computing Technology, Chinese Academy of Sciences & University of Chinese Academy of Sciences

Why NewsEnv? A Motivating Example

Assumption: A news environment is an important inspiration of the **fabrication** of contemporary fake news, as fake news has to **grab** attention from it.

Let's observe the NewsEnv as a fake news creator!

The Syria-China football match seems **popular**. I can follow it by fabricating some **novel** (and fake) thing on this event!

 \succ For Novelty-Oriented MicroEnv (\mathcal{E}^{mic}) Perception: Obtain the Kernel Output for $p-\mathcal{E}^{mic}$ & $m(\mathcal{E}^{mic})-\mathcal{E}^{mic}$ ($m(\cdot)$ is the center vector). **③ Aggregation:** $\mathbf{v}^{p,mac} = \mathrm{MLP}(\mathbf{p} \oplus \mathbf{m}(\mathcal{E}^{mac}) \oplus \mathbf{K}(\mathbf{p}, \mathcal{E}^{mac}))$ > MicroEnv $\mathbf{u}^{sem} = \mathrm{MLP}(\mathbf{p} \oplus \mathbf{m}(\mathcal{E}^{mic})),$ $\mathbf{u}^{sim} = MLP(g(\mathbf{K}(\mathbf{p}, \mathcal{E}^{mic}), \mathbf{K}(\mathbf{m}(\mathcal{E}^{mic}), \mathcal{E}^{mic})))$ $\mathbf{v}^{p,mic} = \mathrm{MLP}(\mathbf{u}^{sem} \oplus \mathbf{u}^{sim}),$

where $g(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \odot \mathbf{y}) \oplus (\mathbf{x} - \mathbf{y}).$

Proposal: Perceive Popularity & Novelty from the NewsEnv

- > **Popularity:** Fake news tends to emerge along with **a popular event**, to obtain great exposure and impacts.
- > Novelty: Fake news often provides novel side information for a popular event, to catch audiences' attention and boost the spread.

y = p (Veracity=fake | Content) Conventional

Step 3: Prediction under Perceived NewsEnv $\mathbf{v}^p = \mathbf{g} \odot \mathbf{v}^{p,mac} + (\mathbf{1} - \mathbf{g}) \odot \mathbf{v}^{p,mic}$ **(1) Gate Fusion:** $\mathbf{g} = \text{sigmoid} (\text{Linear} (\mathbf{o} \oplus \mathbf{v}^{p,mac}))$ **②** Final Prediction: $\mathbf{\hat{y}} = \operatorname{softmax}(\operatorname{MLP}(\mathbf{o} \oplus \mathbf{v}^p))$

Ours (Theoretical) y = p (Veracity=fake | Content, NewsEnv)

Ours (In Practice) y = p (Veracity=fake | Content, Popularity/Novelty in NewsEnv)

NewsEnv Perception (NEP) Framework

Step 1: NewsEnv Construction

- > MacroEnv: A full dump of recent news items (say, 3d) from selected outlets to reflect the represent distribution of mainstream focuses.
- \blacktriangleright MicroEnv: Retrieve Top-k similar news items to the target post p, to build an event-constrained environment.

Step 2: NewsEnv Perception

(1) **Representation and Similarity Calculation:** Use BERT to obtain vectors

Experiments on New Datasets

Dataset	Chinese			English			News Outlet	Stats of	News Outlets			
	Train	Val	Test	Train	Val	Test	Chinese People's Daily Yinhua Agency	Datasets	in NewsEnv			
#Real #Fake Total	8,787 8,992 17,779	5,131 4,923 10,054	5,625 5,608 11,233	1,976 1,924 3,900	656 638 1,294	661 628 1,289	Xinhua Net CCTV News The Paper Toutiao News	Performances ➤ All six base models see an				
#News Items Min/Avg/Max of $ \mathcal{E}^{mac} $ in 3 days	583,208 41 / 505 / 1,563			1,003,646 308 / 1,614 / 2,211			<i>English</i> Huffington Post NPR Daily Mail	improvement in terms of Acc. and macF1.				

Model			Chi	nese		English				
		Acc.	macF1	$F1_{\rm fake}$	$F1_{\rm real}$	Acc.	macF1	$F1_{\mathrm{fake}}$	$F1_{\rm real}$	
	Bi-LSTM	0.727	0.713	0.652	0.775	0.705	0.704	0.689	0.719	
	+NEP	0.776	0.771	0.739	0.803	0.718	0.718	0.720	0.716	
	$\mathbf{EANN}_{\mathbf{T}}$	0.732	0.718	0.657	0.780	0.700	0.699	0.683	0.714	
Post-Only	+NEP	0.776	0.770	0.733	0.807	0.722	0.722	0.722	0.722	
	BERT	0.792	0.785	0.744	0.825	0.709	0.709	0.701	0.716	
	+NEP	0.810	0.805	0.772	0.837	0.718	0.718	0.720	0.715	
	BERT-Emo	0.812	0.807	0.776	0.838	0.718	0.718	0.719	0.718	
	+NEP	0.831	0.829	0.808	0.850	0.728	0.728	0.728	0.728	
"Zoom-In"	DeClarE	0.764	0.758	0.720	0.795	0.714	0.714	0.709	0.718	
	+NEP	0.800	0.797	0.773	0.822	0.717	0.716	0.718	0.714	
	MAC	0.755	0.751	0.717	0.784	0.706	0.705	0.708	0.701	
	+NEP	0.764	0.760	0.732	0.789	0.716	0.716	0.716	0.716	

and *cosine* similarity to obtain the post-news item similarity.

(2) Gaussian Kernel Pooling: Transform the sim list into a fixed-dim vector.

> Determine the kernel distribution across [-1,1]

Soft Counting when $\textit{cosine sim} {
ightarrow} \mu$, output
ightarrow 1; otherwise 0

>Calculate Gaussian outputs for each kernel. Sum, concat, & norm to

obtain the Kernel Output.

$$\mathbf{K}_{k}^{i} = \exp\left(-\frac{(s(\mathbf{p}, \mathbf{e}_{i}) - \mu_{k})^{2}}{2\sigma_{k}^{2}}\right) \qquad \mathbf{K}_{k}(\mathbf{p}, \mathcal{E}^{mac}) = \sum_{i=1}^{|\mathcal{E}^{mac}|} \mathbf{K}_{k}^{i} \qquad \mathbf{K}(\mathbf{p}, \mathcal{E}^{mac}) = \operatorname{Norm}\left(\bigoplus_{k=1}^{C} \mathbf{K}_{k}(\mathbf{p}, \mathcal{E}^{mac})\right)$$

For Popularity-Oriented MacroEnv (\mathcal{E}^{mac}) Perception: Obtain the Kernel Output for \mathbf{p} - \mathcal{E}^{mac} .

Conclusion

- Problem: To the best of our knowledge, we are the *first* to incorporate news environment perception in fake news detection.
- **Method:** We propose the **NEP** framework which exploits the perceived signals from the macro and micro news environments of the given post for fake news detection.
- **Data & Experiments:** We construct the *first* dataset that includes contemporary main-stream news data for fake news detection. Experiments on offline and online data show the effectiveness of NEP.

