



## *Ten Words Only Still Help*: Improving Black-Box AI-Generated Text Detection via Proxy-Guided Efficient Re-Sampling

Yuhui Shi<sup>1,2</sup>, Qiang Sheng<sup>1</sup>, Juan Cao<sup>1,2</sup>, Hao Mi<sup>1,2</sup>, Beizhe Hu<sup>1,2</sup>, Danding Wang<sup>1</sup> <sup>1</sup>Institute of Computing Technology, Chinese Academy of Sciences <sup>2</sup>University of Chinese Academy of Sciences

2024.08.09

## Introduction





Background: The misuse of large language models (LLMs) has led to issues such as misinformation and academic dishonesty, which makes Al-generated text (AIGT) detection critical.

## Introduction





- Task Formulation: AIGT detection aims to obtain a classifier  $f: x \to y$ , where y is the source of the given text x.
  - **Binary AIGT Detection:**  $y \in \{\text{human, AI}\}$
  - Multiclass AIGT Detection:  $y \in \{\text{human}, \theta_1, \theta_2, \dots, \theta_M\}$ , where  $\theta_i$  is a LLM

# **Motivation**





Challenge: White-box methods have better performance and generalizability, but they require access to LLMs' internal states and are not applicable to black-box settings.

# **Motivation**





Solution: Estimate word generation probabilities as pseudo whitebox features via multiple re-sampling to help improve AIGT detection under the black-box setting.



#### A naive solution:

 For each word in given text x, we instruct the black-box LLM for N times using the following prompt:

*Please continue writing the following text, starting from the next word:*  $\{x_{\leq i}\}$ .

b. The estimated probability of  $x_i$  given  $\{x_{\leq i}\}$  is computed as the frequency of  $x_i$  in the output word set  $\{o_j\}_{j=1}^N$ :

$$\hat{p}(x_i|x_{< i}) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{I}(o_j = x_i).$$

c. Use estimated probability as an alternative input of white-box methods.

# **Preliminary Study**





**Finding 1:** It is feasible to perform black-box AIGT detection by estimated probs. **Finding 2:** Low-probability words gain higher attention from the detector.



#### We propose POGER, a proxy-guided efficient re-sampling method.



# **Step 1: Error-Aware Word Selection**



- Solution Use an easy-to-use LM (e.g., GPT-2) as the proxy to infer on the given text x and obtain token probabilities  $p^{\theta} = (p_1^{\theta}, p_2^{\theta}, \cdots, p_n^{\theta})$
- $\succ$  Adopt an error-aware bottom-k word selector to get the representative word set S:

$$\boldsymbol{p}^{\theta'} = \left\{ p_i \middle| p_i \ge \frac{1}{1 + N\Delta^2} \right\} \qquad \text{IDX} = \left\{ i \middle| p_i^{\theta} \in \text{MINK}(\boldsymbol{p}^{\theta'}) \right\}, \text{S} = \left\{ x_i \middle| i \in \text{IDX} \right\}$$



# **Step 2: Probability Estimation**

- Sample and calculate probability for the selected k words in S on the given M candidate black-box LLMs by N times
- Get the pseudo log probabilistic feature matrix:

$$\mathbf{L} = [oldsymbol{l}_i]_{i=1}^k \in \mathbb{R}^{k imes M} \qquad oldsymbol{l}_i = \left[ \hat{p}_{ heta_j} \left( x_{ ext{IDX}[i]} | x_{ ext{IDX}[i]-b: ext{IDX}[i]-1} 
ight) 
ight]_{j=1}^M$$



# **Step 3: Context-Compensated Classification**

As context compensation, introduce the contextual semantic representation C ∈ ℝ<sup>k×d</sup>
 Attention(Q, K, V) = softmax (QK<sup>T</sup>/√d) V, F = Attention(L, C, C)⊕Attention(C, L, L)
 ŷ = softmax(MLP(F))



## **Evaluation**



| Method                    | Human        | GPT-2        | GPT-J  | LLaMA-2 | Vicuna | Alpaca | GPT-3.5      | GPT-4        | MacF1        |  |  |  |
|---------------------------|--------------|--------------|--------|---------|--------|--------|--------------|--------------|--------------|--|--|--|
| Partial White-Box Setting |              |              |        |         |        |        |              |              |              |  |  |  |
| DNA-GPT White             | N/A          | 62.70        | 40.79  | 45.36   | 30.49  | 70.18  | N/A          | N/A          | 49.91*       |  |  |  |
| Sniffer                   | 96.60        | 100.00       | 100.00 | 98.49   | 95.85  | 99.23  | 75.34        | 72.65        | 92.27        |  |  |  |
| SeqXGPT                   | 98.07        | 100.00       | 99.62  | 98.88   | 99.62  | 98.87  | 85.93        | 84.17        | 95.64        |  |  |  |
| POGER-Mixture             | <u>97.32</u> | 98.88        | 99.23  | 98.11   | 97.71  | 98.86  | 97.36        | 97.38        | 98.11        |  |  |  |
| w/o Context Compensation  | 96.97        | 99.62        | 99.23  | 96.68   | 94.94  | 98.48  | <u>95.42</u> | <u>95.13</u> | <u>97.06</u> |  |  |  |
| Black-Box Setting         |              |              |        |         |        |        |              |              |              |  |  |  |
| RoBERTa                   | 88.24        | 78.03        | 86.55  | 55.47   | 58.70  | 59.91  | 70.63        | 84.13        | 72.71        |  |  |  |
| T5-Sentinel               | 87.29        | 85.42        | 88.71  | 67.78   | 62.11  | 69.73  | 75.79        | 79.83        | 77.08        |  |  |  |
| DNA-GPT Black             | N/A          | 38.58        | 21.56  | 48.80   | 33.85  | 47.15  | 53.99        | 39.82        | 40.53*       |  |  |  |
| Sniffer                   | 87.41        | <u>89.82</u> | 87.26  | 29.52   | 47.62  | 35.84  | 34.21        | 52.63        | 58.04        |  |  |  |
| SeqXGPT                   | 91.67        | 89.66        | 86.77  | 23.64   | 46.31  | 45.64  | 42.10        | 62.40        | 61.02        |  |  |  |
| POGER                     | 92.49        | 93.75        | 89.96  | 90.49   | 89.30  | 93.82  | 90.98        | 92.59        | 91.67        |  |  |  |
| w/o Context Compensation  | 84.21        | 88.30        | 80.63  | 81.88   | 88.65  | 91.95  | 89.49        | 87.35        | 86.56        |  |  |  |

- POGER outperforms all baseline methods in both settings of multiclass AIGT detection.
- POGER has better OOD generalization capabilities, benefiting from the pseudo probabilistic.

| Mathad      | In-Dist. | <b>Out-of-Distribution</b> |           |            |           |  |  |  |
|-------------|----------|----------------------------|-----------|------------|-----------|--|--|--|
| Method      |          | QA-                        | →Writing  | Writing→QA |           |  |  |  |
| RoBERTa     | 72.71    | 54.23                      | (-25.42%) | 46.73      | (-35.73%) |  |  |  |
| T5-Sentinel | 77.08    | 47.23                      | (-38.73%) | 53.19      | (-30.99%) |  |  |  |
| Sniffer     | 58.04    | 57.50                      | (-0.93%)  | 53.16      | (-8.41%)  |  |  |  |
| SeqXGPT     | 61.02    | 59.07                      | (-3.20%)  | 54.94      | (-9.96%)  |  |  |  |
| POGER       | 91.67    | 89.00                      | (-2.91%)  | 84.19      | (-8.16%)  |  |  |  |

# Conclusion



- Motivation: Achieve "white-boxizing" the black-box LLM by estimating word generation probability through multiple re-sampling, so that the high performance white-box detection methods can also be used under black-box setting.
- Method: By selecting low-probability words as representative words, the number of re-samples can be significantly reduced, thus improving efficiency and reducing costs.
- Result: Experiments on texts from humans and 7 LLMs demonstrated the superiority of POGER.



https://github.com/ICTMCG/POGER





(WeChat, in chinese)

Ten Words Only Still Help: Improving Black-Box AI-Generated Text Detection via Proxy-Guided Efficient Re-Sampling







# THANKS

#### shiyuhui22s@ict.ac.cn